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Abstract—Our goal in this paper is to process short-text
collections, labeled by their topics, and identify those groups
of text items that may be better characterized by new labels
and those text items that may be mislabeled. When a labeled
text collection is clustered based on the syntactic and semantic
contents of text items, it is expected that each cluster will also
share the same label for text items contained in it. Our approach
presented here embeds the short texts in a lower-dimensional
space and then, using spatial label entropy as a guide, finds
spatial clusters that are contiguous but have a wide diversity in
their label assignments. We use LLMs to process such impure
label clusters to discover new labels for them. We demonstrate
promising results obtained by this approach for two different
collections of short texts.

Index Terms—Natural Language, Large Language Models
(LLM), Text Clustering

I. INTRODUCTION

Large language models are revolutionizing the influence
of various AI and NLP tools in our daily lives. Many text
processing systems include the important task of tagging
individual text items by their topic-defining labels [21], [25],
[34]. Typical tagging systems work with fixed sets of labels
and assign one or more of these pre-selected labels to each
text item. This process is particularly challenging for correctly
classifying short-texts (e.g., Tweets, Chatbot inputs) from
streaming or dynamically changing data sources. For such
short text collections, new topics keep arising, requiring the
static set of labels to be updated with the new emerging
topic labels. In addition, label assignment systems can make
mistakes and assign incorrect labels to some text items. In this
paper, we present a solution that seeks to address these two
problems with the help of LLMs. Our solution both detects
text items that have potentially incorrect labels and proposes
labels for sets of short texts that are labeled differently despite
having textual similarities.

Label assignment systems that use classification models for
natural language documents often suffer from overconfidence
and lack of interpretability. When faced with novel or ambigu-
ous types of text inputs, these models can produce mislead-
ingly high confidence labels and scores [14], necessitating a
labor intensive manual review to assess their performance and
discover misclassifications. Existing approaches to model eval-
uation of Machine Learning systems to match user perception

of conceptual categories do not effectively handle these cases
of ambiguous input texts and output labels [18].

We present here a clustering-based method to identify those
groups of text items whose members are very similar in terms
of their text content such that they appear together in the
embedding space, but whose preassigned topic labels have a
large diversity. These texts may contain an emerging topic that
was not considered in the initial set of labels or may contain
ambiguous content that spans multiple categories that may be
better reflected by refinement of the labels. For such impure
clusters, we deploy LLMs to seek suggestions for new topic
labels that better reflect the shared text contents of the cluster’s
items. The degree of diversity of labels within a cluster is
captured by us in terms of the entropy of the labels occurring
within a cluster. Our approach is derived from an adaptation
of the basic DBSCAN algorithm, which is a robust approach
that has been adapted to meet other problem-specific needs
[2], [3], [22], [39]. Our novel approach enables the automatic
discovery of emerging or ambiguous topics that the existing
label taxonomy misses, providing a powerful way to refine
taxonomies and reveal hidden structure in text collections. To
our knowledge, our work is the first to combine entropy- based
cluster impurity detection, density-based spatial clustering, and
LLM-driven interpretation into a single framework for topic
discovery in text collections.

A. Motivation

Text classification plays an important role in various do-
mains, including sentiment analysis, topic modeling, and in-
formation retrieval. However, text classification is challenging
due to a lack of clear separability among topic classes and
large overlap areas among topics in classification spaces. One
of the primary goals for such data situations is diagnosing
misclassifications and understanding the reasoning behind
model’s decisions. Text classification models often struggle
to adapt to the drifts that occur in the text content of their
inputs and also in their topic areas, especially in the situation
of streaming text items [24].

Another challenge in text classification is determining areas
of interest for model updates. Given the dynamic nature
of text-based data, particularly in domains such as news,
social networks, and the scientific literature, identifying where



improvements should be focused is crucial. Without systematic
methods to pinpoint evolving topics or shifting classification
trends, models risk becoming obsolete [16]. The challenge ex-
tends to leveraging large language models (LLMs) effectively,
as they provide powerful analysis capabilities, but require a
structured approach to focus on relevant insights within vast
text corpora. Methods for reducing and refining a corpus
to concentrate on specific areas of interest remain an open
research question [8].

In addition, the ability to identify new topics from textual
data is of significant importance, particularly for applications
such as market analysis, policy monitoring, and scientific dis-
covery. Traditional topic modeling techniques such as Latent
Dirichlet Allocation (LDA) and neural-based models often
fail to capture novel topics effectively without retraining on
updated data [4]. Thus, investigating whether LLMs and ad-
vanced clustering techniques, can enhance new topic detection
and classification remains a pressing concern.

This paper aims to address these challenges by exploring
methods for improving text classification, identifying emerging
topics, and focusing LLM-based analysis on relevant segments
of large text corpora. Using advances in machine learning, nat-
ural language processing (NLP), and information retrieval, we
seek to develop more effective strategies to refine classification
models and gain deeper insights into textual data.

Modern text embeddings (e.g. transformers [35]) reside in
very high-dimensional spaces with complex nonlinear struc-
tures. Traditional clustering algorithms often struggle to ef-
fectively capture the complex, nonlinear structures and varying
densities inherent in high-dimensional embedding spaces. Tra-
ditional clustering struggles with the ”curse of dimensionality”
[17] and the inherent complexity of these spaces.

B. Contribution

In this paper, we contribute a novel framework for iden-
tifying emerging topics and mislabeled items in short-text
collections.

We develop a novel clustering approach which shifts the
focus from density of points to diversity of labels in a spatial
region. This entropy-driven clustering in the embedding space
offers a powerful approach for uncovering hidden structures
and patterns within complex data. By incorporating spatial
entropy, the method highlights ”impure regions” that coincide
with classification uncertainty, mislabeled text, or new emerg-
ing topics. We leverage Large Language Models to analyze
impure clusters to produce summaries, identify mislabeled text
items, and suggest new topic labels that capture the coherence
among the text items in the cluster. By unifying unsupervised
clustering and LLM-driven analysis, this work helps produce
semantically meaningful clusters with suitable topic labels for
all clusters.

II. RELATED WORK

A. Using LLMs for Label Prediction

Large language models (LLMs) [27] provide human-like
natural language capabilities. A recent study finds that LLMs

outperform traditional methods like TF-IDF and Latent Dirich-
let Allocation (LDA) in capturing meaningful and contextually
relevant topics for sets of text items [10]. The key challenge
with the LLM compared to traditional methods is the computa-
tional cost and bias. LLMs can be biased, based on the training
data used, which can potentially influence the inference of
topics for sets of text items [7].

B. Determining Need to assign New Labels

A critical aspect of maintaining high-quality labeled datasets
is determining when existing taxonomies of labels fail to
adequately describe the content and new labels must be
discovered. Prior research has explored various strategies for
detecting such needs of intra-class semantic diversity, inter-
class confusion, and cluster purity [30].

One approach is to apply a novel clustering technique
to high-dimensional embeddings of text items and identify
clusters with low label purity, indicating potential for new
category creation [36]. More recent work leverages represen-
tation learning and unsupervised anomaly detection to uncover
content not well-represented by existing labels [6], [31].

In natural language processing, topic modeling [29] and
embedding-based semantic clustering [28] have been used to
reveal latent topics that may warrant new labels. Several stud-
ies integrate large language models (LLMs) into this process
to provide human-interpretable descriptions of potential new
categories [5], [20].

These approaches highlight the value of combining quan-
titative measures (e.g. spatial entropy, purity scores) with
qualitative assessments (e.g., LLM-generated summaries) to
make informed decisions about when and how to expand a
label set.

C. Entropy Measure for Impurity Detection

Entropy has long been used as a statistical measure of
uncertainty in information theory [32]. In the context of
classification and clustering, entropy quantifies the diversity
of class labels within a set of samples. High entropy indicates
label heterogeneity, which can signal impurity in a cluster or
local neighborhood of points. In clustering, label entropy has
been applied as a post hoc quality metric to evaluate the purity
of discovered clusters [30]. In anomaly detection, high-entropy
neighborhoods have been leveraged to flag potential outliers
or emerging patterns [6], [31]. Our work builds upon this line
of research by computing spatial label entropy directly in the
sentence embedding space. This allows us to isolate dense
but label-diverse regions, which we term impure regions, for
further semantic analysis using large language models.

D. Novel Ideas of Our Approach

While prior work has explored label impurity detection,
cluster analysis, and topic discovery separately, our approach
integrates these components into a unified pipeline. Specifi-
cally, we combine:

1) Spatial Label Entropy in Embedding Space: Building
on entropy-based impurity metrics [30], we compute local



entropy directly in high-dimensional sentence embed-
dings [28] to detect dense yet label-diverse regions.

2) DBSCAN Adaptation for Impure Clusters: Unlike
traditional density-based clustering [12], which groups all
dense regions, our method isolates only those with high
semantic impurity, ensuring that downstream analysis
focuses on the most informative areas.

3) LLM-Driven Semantic Analysis: Leveraging recent ad-
vances in large language models [13], we prompt the
model with representative examples from impure clusters
to obtain interpretable summaries, re-labeling sugges-
tions, and candidate new topics.

To our knowledge, no prior work has combined entropy-
based cluster impurity detection, density-based spatial cluster-
ing, and LLM-driven interpretation into a single framework.
This framework sets the stage for iterative refinement of
the set of labels. This integration enables both quantitative
identification of problematic regions and qualitative generation
of actionable label refinements.

III. PROPOSED APPROACH

The main flow of our methodology can be summarized as
the following sequence of steps: (i) Perform SentenceTrans-
former embedding of all short texts into a lower-dimensional
space, (ii) Compute entropy of spatial distribution of document
labels around each point in the embedding space, (iii) identify
those contiguous regions of embedding space that have a
high concentration of high entropy points, and call them
impure regions, (iv) use LLMs to analyze text contents of
documents in impure regions to identify new possible topics
and misclassified documents.

A. Embedding Text Items in a Lower Dimensional Space

The first step in our clustering pipeline is to convert each
short-text document into a fixed-size vector representation. We
employ the SentenceTransformer framework with the
pre-trained model all-MiniLM-L6-v2 [11]. We selected
all-MiniLM-L6-v2 over other models, due to its suitabil-
ity for short text encoding [19], [33], [37]. It is known to works
well with Euclidean or cosine distances [19]. Other embedding
models could be utilized for this step, provided they met these
criteria.

We have developed an adaptation of the DBSCAN algorithm
[12] to find clusters of documents that have similar text and
semantics but different assigned labels. This requires that
the embedding space be such that semantically similar items
are positioned close together under a given distance metric.
The embedding model used by all-MiniLM-L6-v2 [11]
produces embeddings that preserve semantic similarity, which:

• Improves separation between text items with distinct
semantics.

• Creates dense neighborhoods for semantically similar,
high-entropy points, enabling our entropy-based DB-
SCAN extension to identify dense regions with diverse
labels.

The 384-dimensional output provides a computationally effi-
cient yet semantically rich representation, facilitating large-
scale clustering.

B. Spatial Entropy of Label Distributions

We seek to identify regions of the embedding space where
documents are semantically close yet have highly diverse
preassigned labels. Such regions are often indicative of:

1) Potential Misclassifications: Points where the assigned
label does not align with the majority of semantically
similar texts.

2) Emerging Topics: Novel concepts not adequately repre-
sented in the existing set of labels.

3) Ambiguous Content: Texts that genuinely span multiple
topics and require human review or label refinement.

Entropy, in the information-theoretic sense, quantifies the
diversity (or uncertainty) of labels within a neighborhood in
the embedding space. By focusing on spatial entropy, we
explicitly capture the variation in label distribution around
each point, allowing the algorithm to target regions where label
assignments are least consistent.

Our contribution focuses on using spatial entropy. Let
E = {e1, e2, . . . , en} be the set of normalized embeddings
for n documents, and let L = {ℓ1, ℓ2, . . . , ℓn} be their
corresponding labels. For a given point ei:

1) Identify the set of neighbors Nϵ(ei) within radius ϵ
according to a chosen distance metric d(·, ·).

2) Extract the label set Lϵ(ei) for these neighbors.
3) Compute the Shannon entropy:

H(ei) = −
∑
c∈C

p(c) log2 p(c)

where C is the set of unique labels in Lϵ(ei) and p(c) is
the empirical probability of label c in that neighborhood.

The result H(ei) measures the local diversity of labels around
ei in embedding space.

The spatial entropy computation depends on three key
parameters:

• Neighborhood Radius (ϵ): Defines the spatial extent of
the local neighborhood.

• Minimum Points for Entropy Calculation
(min points): The minimum number of neighbors
required to compute a meaningful entropy value;
otherwise H(ei) is set to zero. The results presented in
this paper use a minimum value of eight.

• Distance Metric (metric): Determines neighborhood
membership (e.g., cosine or Euclidean). The choice af-
fects both neighborhood composition and the resulting
entropy distribution. For our test results we have used
the Euclidean distance.

Spatial entropy is sensitive to its parameter settings:
• ϵ: Too small an ϵ may produce sparse neighborhoods,

leading to unstable entropy estimates dominated by noise.
Too large an ϵ may merge semantically distinct regions,



reducing entropy contrast and obscuring high-uncertainty
zones.

• min points: If set too low, entropy values may be com-
puted from insufficient samples, inflating variability. If set
too high, genuinely high-entropy regions in sparse areas
may be ignored.

• metric: A poor choice can distort neighborhood bound-
aries. For example, Euclidean distance in unnormalized
spaces may overemphasize vector magnitude, while co-
sine distance better reflects semantic similarity in normal-
ized embedding spaces.

Careful calibration of these parameters is essential for bal-
ancing sensitivity to label inconsistency against robustness to
noise. In practice, parameter sweeps combined with visual
inspection of high-entropy regions provide an effective tuning
strategy. We have tested minor variations and the results
remained stable.

C. Clustering Impure Regions in Embedding Space

In our approach, we use our developed adaptation of the
DBSCAN algorithm [12] to identify impure regions in the
embedding space - areas where documents are spatially close
but have highly diverse assigned labels. Such regions are of
particular interest because they often indicate:

1) Mislabeled Data: Documents semantically aligned but
incorrectly labeled.

2) Emerging Topics: Novel concepts not represented in the
current taxonomy.

3) Ambiguous Content: Items that legitimately span mul-
tiple topics, useful for refining label definitions.

Given a set of normalized embeddings E = {e1, . . . , en}
and corresponding labels L = {ℓ1, . . . , ℓn}, the DBSCAN-
based impure region clustering proceeds as follows:

1) Compute Spatial Entropy: For each ei, calculate the
local label entropy H(ei) over its ϵ-neighborhood.

2) Mark High-Entropy Points: Classify points as high-
entropy if H(ei) > τ , where τ is a predefined threshold
of .55 to find inherently fuzzy or overlapping classes.

3) Identify Core Points: Mark a high-entropy point as
a core point if at least min_samples_high of its
neighbors are also high-entropy. For our test results, we
used 55% of the points within the ϵ hypersphere.

4) Cluster Formation: Starting from each unassigned core
point, grow a cluster by recursively including neighboring
high-entropy points and their reachable neighbors (stan-
dard DBSCAN expansion).

5) Assign Cluster Labels: All points in the same connected
high-entropy region receive the same cluster ID; unas-
signed points are labeled −1 (noise).

Traditional DBSCAN forms clusters solely based on spatial
density — measured by number by points within an ϵ-radius of
a point. Our adaptation replaces pure density with a measure
of diversity of labels for text items with the ϵ-radius.

High-entropy regions are disproportionately informative for
evaluation and model refinement.

• They often contain points near decision boundaries in
classifier space.

• They reveal inconsistencies between human labeling and
semantic similarity.

• They can identify emerging or merged topics that static
taxonomies fail to capture.

While our algorithm operates in a 384-dimensional embed-
ding space, Figure 1 illustrates the concept in a 2-D projection
for easy visualization. Here, each point represents a document
embedding, color indicates its assigned high or low entropy
rating, and dotted outline mark high-entropy clusters of high-
entropy points detected by our algorithm.
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Fig. 1. Cluster of high entropy points This figure illustrates an example of
a high-entropy cluster identified by our method. Individual points are colored
(e.g., red for ’H’ for high entropy, green for ’L’ for low entropy) according
to whether their entropy value exceeds a predefined threshold.

D. LLMs’ Processing of Impure Clusters
Once impure regions, dense clusters in embedding space

with high label diversity are identified the next step is
to interpret and act upon them. Traditional post-processing
approaches typically rely on statistical summaries, manual
inspection, or rule-based relabeling [9], [15], [23]. These
methods can be labor-intensive and limited in their ability to
generalize. Large Language Models (LLMs) offer a promising
alternative: by leveraging their extensive pretraining on diverse
textual data, they can:

1) Provide nuanced semantic interpretations of the mixed-
content clusters.

2) Suggest plausible re-labelings or subtopic splits without
exhaustive manual coding.

3) Identify new topic candidates or reveal ambiguous phras-
ing that leads to label confusion.

This makes LLMs particularly effective for rapidly extracting
actionable insights from high-entropy clusters.

The process of applying the LLM GPT-4o-mini [26]
LLM to impure regions proceeds as follows:

1) Cluster Selection: Choose impure clusters detected by
the entropy-based DBSCAN method.



2) Data Extraction: Retrieve the original short texts and
their preassigned labels for all points in the cluster.

3) Prompt Construction: Create a structured prompt for
the LLM that includes:
• Texts and labels from the cluster.
• Instructions to analyze semantic themes, label consis-

tency, and potential refinements.
• Optional constraints such as limiting suggestions to a

fixed label vocabulary.
4) LLM Processing: Pass the prompt to the LLM for

analysis.
5) Output Parsing: Extract relevant sections from the

LLM’s output for downstream tasks (e.g., relabeling,
taxonomy update).

The quality of LLM-based analysis depends on LLM pa-
rameters:

• Number of Examples in Prompt (nex): Too few ex-
amples may yield generic analysis; too many can exceed
token limits or dilute focus.

• Prompt Specificity: Overly broad prompts may produce
unfocused results; overly constrained prompts may limit
discovery of novel topics.

• Temperature: Higher temperature can encourage cre-
ative label suggestions, but may reduce reproducibility.

• Model Size: Larger LLMs tend to capture more nuanced
semantics, but incur higher computational cost.

LLM outputs are structured into distinct parts, each serving
a specific purpose:

1) Cluster Summary: Concise semantic description of the
dominant and minority themes within the cluster.

2) Label Consistency Analysis: Quantitative or qualitative
assessment of how well existing labels align with content.

3) Suggested Re-labelings: Revised label assignments for
each text, either from the original label set or expanded
with new topics.

4) Emergent Topic Candidates: Suggested new categories
that better capture underrepresented themes.

Below is an excerpt of LLM output for an impure cluster
containing ”sports” and ”world” and ”Sci/Tech” items:

Upon analyzing the ’text’ column, several
entries labeled as ’Sports’ contain content
that primarily discusses technology or
security aspects related to the Olympics,
which may indicate misclassification. The
identifiers of potentially misclassified
rows are: [197, 328, 372, 399, 409, 2350].

Suggested new topic labels in order:
1. Technology
2. Security
3. Event Management

This type of output is valuable because:
• Cluster Summary accelerates human understanding of

the thematic scope.

• Label Consistency Analysis identifies systematic misla-
beling patterns.

• Suggested Re-labelings provide actionable corrections to
improve dataset quality.

• Emergent Topic Candidates support taxonomy evolu-
tion and model retraining.

By structuring the prompt to request these specific outputs, we
ensure that the LLM delivers insights directly usable for qual-
ity assurance, taxonomy refinement, and model improvement.

IV. EXPERIMENTS AND ANALYSIS

Overview of the evaluation: In this section, we evaluate our
approach. We selected two suitable datasets with emerging
topics. Then we used our method to identify impure clusters,
and describe their characteristics. We present a set of example
impure clusters, the texts they contain and the proposed labels,
to illustrate the application of our method. We did not validate
through comparison against alternative clustering methods,
because to our knowledge no other algorithm creates clusters
driven by entropy.

A. Evaluation Dataset Selection and Justification

The goal is to evaluate the effectiveness of our methodology
in collections of general-purpose short-texts. To do this we
selected two complementary datasets: (1) the News Topic
Classification dataset derived from AG News, and (2) the
Twitter Financial News dataset1. These datasets are well-suited
for our purpose due to their topical diversity, balanced label
distributions, and suitable sizes.

Tweets and news headlines serve distinct but complementary
roles in this evaluation. Tweets represent short user-generated
content with informal language, real-time reactions, and vary-
ing semantics, making them ideal for testing the robustness
of the algorithm to noise and ambiguity. In contrast, news
headlines are concise, curated summaries of structured events,
offering cleaner semantic signals and more formal language.
This dichotomy allows us to evaluate clustering performance
across both high-noise and low-noise text environments, sup-
porting a comprehensive analysis of entropy-based embedding
learning.

Dataset 1: News Topic Classification (AG News):
• Source: Derived from the AG corpus of news articles, as

introduced by Zhang et al. [38]
• Number of Articles: Over 1 million
• Number of Category Labels: 4
• Topic Labels: World, Sports, Business, Sci / Tech
• Example Headlines:

– World: “Japan urges North Korea to cancel missile
launch”

– Sports: “Federer wins fifth Wimbledon title in epic
final”

– Business: “Oil prices rise amid OPEC output cut
speculation”

1https://www.kaggle.com/datasets/sulphatet/twitter-financial-news



– Sci / Tech: “NASA’s Mars rover sends new panoramic
images”

• Label Clarity: This dataset has clearly defined, mu-
tually exclusive topic labels with relatively balanced
distribution, offering an effective testbed for clustering
algorithms on structured and clean data.

• Selection Method for Experiments: To ensure a bal-
anced representation across categories, we selected the
first 1000 short texts for each of the following four labels:
Business, Sci/Tech, Sports, and World. This resulted in a
total dataset size of 4000 short texts.

Dataset 2: Twitter Financial News:
• Source: Used in InstructNet [1]
• Number of Category Labels: 20
• Topic Labels: Analyst Update, Fed — Central Banks,

Company — Product News, Treasuries — Corporate
Debt, Dividend, Earnings, Energy — Oil, Financials,
Currencies, General News — Opinion, Gold — Metals
— Materials, IPO, Legal — Regulation, M&A — Invest-
ments, Macro, Markets, Politics, Personnel Change, Stock
Commentary, Stock Movement

• Example Tweets:
– Earnings: “Apple Q4 earnings beat expectations with

record iPhone sales”
– Fed — Central Banks: “Powell signals possible pause

in interest rate hikes”
– Stock Movement: “TSLA up 7% after delivery numbers

beat estimates”
• Label Clarity: Labels are more granular and some-

times overlapping, introducing ambiguity. This makes the
dataset ideal for evaluating clustering in noisy, real-world
scenarios.

• Selection Method for Experiments: This dataset origi-
nally contained 16,990 records. For this study, we reduced
the dataset to focus on specific topics, resulting in a total
of 6,186 records across several labels. The distribution of
labels in this reduced dataset is as follows: Stock - 3344,
Trading - 471, Withdraw - 321, Personnel - 495, Politics
- 985, Markets - 501, Metals - 69.

Comparative Utility and Sensitivity Analysis: The combined
use of these two datasets enables a comprehensive assessment
of clustering performance across different text domains. The
AG News dataset serves as a clean, structured benchmark
with clearly separated topics, while the Twitter Financial News
dataset introduces complexity through informal language and
topic overlap. To evaluate the stability and reliability of the
clusters, a sensitivity analysis was performed. This included:

• Varying the number of clusters (k) and observing changes
in cluster purity.

• Measuring cluster stability using different parameters.
• With slight changes in entropy threshold and ϵ, the core

clusters remained intact with slight variations in size of
less than 5%.

Clustering in the AG News dataset appears robust to minor
perturbations and variations in k, with frequent words and

cluster structures remaining stable throughout the runs. Simi-
larly, the Twitter Financial News dataset—despite its informal
syntax and semantic overlap—showed less than a 5% change
in frequent terms and cluster composition, indicating that
its core clustering structure also remained consistent. This
stability across both clean (AG News) and noisy (Twitter)
text reinforces the value of evaluating our model in diverse
environments to ensure effectiveness under realistic conditions.

B. Results and Analysis

This section presents the experimental results of applying
our methodology to assign new labels to documents in impure
clusters.

1) Clustering Results on News Topic Dataset: For the News
Topic Dataset, the clustering step of our methodology yielded
the following results:

2) Parameters and Initial Filtering (News Topic):
• The mean distance to the nearest 8th neighbor for all data

points in the embedding space was 0.9588. Subsequently,
this value was used as the ϵ parameter for all steps that
involve neighborhood definitions for this data set.

• Entropy per Data Point: All those data points whose
ϵ-neighborhood contained at least 8 data points were
considered as dense enough for entropy computation. Out
of the 4000 total points, 779 points met this minimum
neighborhood size criterion.

• High Entropy Point Identification: An entropy thresh-
old high of 0.5 was applied to distinguish high-entropy
points. 575 points were marked as having an entropy
value greater than 0.5.

3) Core Point Identification and Cluster Formation (News
Topic):

• Core Point Determination: A point was marked as a
core point if at least 50% of its neighbors within its ϵ
hypersphere were also marked as high entropy points. A
total of 527 points were marked as core points out of a
total 4000 points.

• Cluster Generation: Finally, these 527 core points were
used as seeds to form clusters. Starting from a core point
as a seed, all its neighbors within its ϵ-neighborhood
were included in the cluster, and the cluster was then
recursively expanded by including all points within ϵ-
neighborhood of each core point already in the cluster. All
clusters containing at least eight points were considered
reasonable for subsequent attention. The algorithm suc-
cessfully formed five distinct clusters. The distribution
of points among these clusters is detailed in Table I.

TABLE I
DISTRIBUTION OF POINTS PER FORMED CLUSTER

ID(#Pts) Entropy Labels
1 (371) 1.0185 Business(284), Sci/Tech(48), World(39)
2 (46) 1.3869 Business(21), World(20), Sci/Tech(5)
3 (307) 0.6377 Sports(267), World(34), Sci/Tech(6)
4 (46) 0.8987 World(35), Business(10), Sci/Tech(1)
5 (15) 0.7219 Business(12), World(3)



C. Clustering Results on Twitter Financial News Dataset

The label-entropy based clustering algorithm was subse-
quently applied to the Twitter Financial News Dataset.

1) Parameters and Initial Filtering (Twitter Financial
News):

• Mean Nearest Neighbor Distance: The mean of the
distances to the 8th nearest neighbors of all data points is
0.8421. This value served as ϵ for the Twitter Financial
News dataset.

• Entropy per Data Point: The entropy for labels in each
point’s neighborhood was computed using the calculated
ϵ (0.8421) and computing only for those points that had
a minimum of eight points in their neighborhoods. 564
points qualified for the computation. ϵ, enabling entropy
calculation.

• High Entropy Points: 328 points were identified as
having an entropy value greater than 0.55.

2) Core Point Identification and Cluster Formation (Twitter
Financial News):

• Core Point Determination: A point was marked as a
core point if at least 50% of its neighbors within its ϵ
hypersphere were also marked as high entropy points. A
total of 232 points were marked as core points.

• Cluster Generation: Using these 232 core points as
seeds, our algorithm identified 10 distinct impure clus-
ters. The distribution of points among these clusters is
presented in Table II.

TABLE II
DISTRIBUTION OF POINTS PER FORMED CLUSTER

ID(#Pts) Entropy Labels

1 (390) 1.3554 stock(216), markets(145), withdraw(16),
metals(13)

2 (70) 1.1157 stock(50), trading(16), markets(3), person-
nel(1)

3 (24) 0.9183 stock(16), trading(8)
4 (15) 0.9710 stock(9), trading(6)
5 (10) 0.7219 stock(8), trading(2)
6 (8) 0.9544 stock(5), markets(3)
7 (44) 1.5033 politics(21), withdraw(14), markets(9)
8 (8) 1.2988 markets(5), withdraw(2), stock(1)
9 (18) 0.9183 personnel(12), stock(6)
10 (16) 0.8960 politics(11), stock(5)

D. Analysis and Discussion

For the News Topic Dataset, the algorithm identified eight
distinct clusters from 4000 embedded data points. The re-
sulting clusters varied in size, suggesting the algorithm’s
capacity to identify both broader thematic groups (e.g., the
large clusters 1 and 3) and smaller, more specific sub-topics
or unique variations. The application to the Twitter Financial
News Dataset yielded 12 distinct clusters.

Overall, these initial results are promising for an algorithm
designed to reveal spatially localized but semantically diverse
groupings of documents. The approach demonstrates a ca-
pacity to capture both general topics and more granular sub-
themes, depending on the characteristics of the input data and
appropriate parameter settings.

E. LLM Analysis and Review of Impure Clusters

We perform analysis of each impure cluster by an LLM
system to seek guidance about (i) topic labels that best capture
the coherence of semantics in the text items included in a
cluster, including possibly new labels that are outside the
existing set of topic labels, and (ii) Text items in a cluster
that are mislabeled.

We show here the LLM responses obtained for the represen-
tative impure clusters from both the News Topic Dataset and
the Twitter Financial News Dataset. This analysis demonstrates
the effectiveness of the label entropy-based clustering tech-
nique by highlighting content coherence, misclassifications
insights, and key topics within each cluster. The LLM’s
ability to consistently identify thematic relevance and point
out subtle misclassifications within the clusters underscores the
utility of this new clustering algorithm in creating semantically
meaningful groupings.

To test the robustness of the new label suggestions by the
LLM for documents in a cluster, we repeated the prompt ten
times. The LLM returned a list of three suggested topics, in
order from best, second best to third best. The first topic (best)
was assigned three merit points, the second topic (second best)
two merit points and the third one (third best) was assigned
one merit point. We added up the merit points earned by
each new topic suggestions across the ten different runs to
compute the most promising topic suggestion. Robustness of
our topic suggestion methodology is demonstrated if topics
are suggested consistently.

1) News Topic Dataset:
a) Cluster 1: Business-Focused News with IPO and Eco-

nomic Trends:

• LLM Response: ”Upon analyzing the ’text’ column,
several entries appear to be misclassified. For instance,
texts discussing Google’s IPO and its implications on
the market are classified under ’Sci/Tech’ but could
also fit under ’Business’ due to their financial context.
Similarly, some entries labeled ’World’ discuss economic
impacts, which are more aligned with ’Business’. Identi-
fiers of misclassified rows (texts) include: 209 (Sci/Tech)
- 215 (Sci/Tech) 220 (Sci/Tech) - 393 (Sci/Tech) - 397
(Sci/Tech). Suggested new topic labels in order: 1. Fi-
nance 2. Technology 3. Market Trends”

• Top Word Frequencies: google (336), oil (226), prices
(220), reuters (202), new (141), us (139), ipo (139), stocks
(135), inc (122), offering (119)

• Top N-grams: oil price (136), new york (92), initial
public (91), public offering (89), initial public offering
(82), york reuters (58), new york reuters (57), google ipo
(49), consumer price (44), price range (38)

• Robustness of LLM Suggested Topics: topic (priority),
topic 2 (priority)This cluster’s strong focus is on business-related terms like

”oil,” ”stocks,” ”Google,” and ”ipo”. The LLM’s identification
of ”Sci/Tech” labeled articles as misclassified for this business-
centric cluster demonstrates our methodology’s effectiveness
in grouping semantically similar content, regardless of initial



TABLE III
LLM SUGGESTED TOPIC LABELS AND THEIR MERIT POINTS

Suggested Label Priority Points
Technology 20
Finance 17
IPO/Finance 6
Media 4
Seven other topics 1-3

broad labels. It also demonstrates that the new labels suggested
by the LLM, in this case ”technology” and ”Finance”, are very
relevant for the terms and the N-grams occuriong in the cluster.
The stability of the suggested labels across multiple runs of
the prompt is also demonstrated by Table III

b) Cluster 3: Olympic Events and Sports News:
• LLM Response: ”Upon analyzing the ’text’ column,

several entries labeled as ’Sports’ contain content that
primarily discusses technology or security aspects related
to the Olympics, which may indicate misclassification.
The identifiers of potentially misclassified rows are: [197,
328, 372, 399, 409, 2350]. Suggested new topic labels in
order: 1. Technology 2. Security 3. Event Management”.

• Top Word Frequencies: athens (299), olympic (193),
gold (183), olympics (137), greece (121), phelps (114),
games (105), us (96), medal (95), reuters (89)

• Top N-grams: gold medal (84), athens reuters (79),
athens greece (65), michael phelps (57), athens olympics
(43), united state (39), greek sprinter (31), olympic game
(29), athens game (27), paul hamm (26)

TABLE IV
LLM SUGGESTED TOPIC LABELS AND THEIR MERIT POINTS

Suggested Label Priority Points
Sports 21
Technology 17
Sports Events 6
World Events 5
Five other topics 1-4

This cluster, characterized by ”athens,” ”olympic,” ”gold,”
and ”phelps”, shows excellent thematic coherence. The LLM’s
explicit recommendation to reclassify ’World’ or ’Sci/Tech’
entries to ’Sports’ within this cluster confirms that our method-
ology effectively groups articles by underlying sports themes,
even when their original assigned labels are very different. The
topics suggested across multiple runs of the prompt include
”Sports” and ”Technology” at the top with much higher merit
compared to all other suggestions. These two top suggestions
are very much in sync with the most frequent words and the
N-grams occurring in the cluster’s documents.

2) Twitter Financial News Dataset:
a) Cluster 1: General Market Trends and Economic

Indicators:
• LLM Response: ”Upon analyzing the ’text’ column,

several entries appear misclassified, particularly those
discussing broader economic trends or specific company
performances that do not directly relate to stocks or

metals. Misclassified identifiers include: 948, 949, 950,
..(more IDs) ...5905, 6067, 6068, 6070]. Suggested new
topic labels: 1. ’economy’, 2. ’financial news’, 3. ’corpo-
rate earnings’.”

• Top Word Frequencies: spy (126), qqq (93), stocks (93),
market (76), stockmarket (74), economy (71), dia (62),
spx (52), markets (49), compq (45)

• Top N-grams: spy qqq (76), http economy (57), qqq dia
(54), spy qqq dia (54), economy stockmarket (51), http
economy stockmarket (49), dia spx (43), dia spx compq
(43), qqq dia spx (43), qqq dia spx compq (43)

TABLE V
LLM SUGGESTED TOPIC LABELS AND THEIR MERIT POINTS

Suggested Label Priority Points
Economic Trends 18
Economy 12
Market Analysis 8
Finance 5
Company Performance 5
Six other topics 1-4

This cluster, rich with terms “spy,” “stocks,” “qqq,” and
“market,” shows strong thematic coherence around broad mar-
ket and economic discussions. The LLM’s recommendations
for ’economic trends’, ’economy’ and ’market analysis’ are
broader terms and align well with high-frequency terms and
N-grams such as ’economy stock market’ and ’spy qqq’. The
stability of these labels across runs (Table VI) further demon-
strates that the suggested labels better capture the broader
underlying economic content of this cluster instead of more
specific preassigned labels such as stocks, metals, or trading.

b) Cluster 2: Elon Musk, Twitter Acquisition, and Legal
Disputes:

• LLM Response: ”Upon analyzing the ’text’ column,
several entries appear to be misclassified. For instance,
tweets discussing legal actions and implications of Elon
Musk’s acquisition of Twitter should be classified under
’legal’ rather than ’trading’ or ’stock.’ The following
identifiers are likely misclassified: 1864, 2926, 5043,
5083, 5085, 5086, 5191, 5200, 5206, 5234, 5565. Sug-
gested new topic labels in order: 1. Legal 2. Corporate
Governance 3. Mergers and Acquisitions”

• Top Word Frequencies: twitter (60), musk (52), elon
(37), twtr (26), deal (24), billion (14), tesla (19), trading
(12), buy (11), business (11)

• Top N-grams: elon musk (36), twtr twitter (8), http http
(7), http trading (6), twitter share (6), buy twitter (5), deal
http (5), twitter http (5), twtr pre (5), billion deal (4)

TABLE VI
LLM SUGGESTED TOPIC LABELS AND THEIR MERIT POINTS

Suggested Label Priority Points
Acquisition News 22
Stock Market Reactions 12
Legal Proceedings 11
Corporate Governance 4
Five other topics 1-3



The clear emphasis on “twitter,” “musk,” and “elon” high-
lights a tight narrative around the Twitter acquisition. The
LLM’s suggestions of new topic names “Acquisition News”
and “Legal Proceedings” are consistent with N-grams like
“elon musk” and “twitter share.” As in prior clusters, repeated
emergence of these labels across runs (Table VII) demonstrates
that the clusters did need new labels and LLM was able to
suggest broader category names instead of the preassigned
more specific topics.

c) Cluster 3: Mergers, Acquisitions, and Stock Perfor-
mance (Unity/Ironsource):

• LLM Response: ”The ’text’ column predominantly dis-
cusses financial transactions, mergers, and stock per-
formance, primarily related to Unity and Ironsource.
However, some entries labeled as ’trading’ may be more
appropriately classified under ’stock’ due to their focus
on stock performance and market reactions. Misclassified
identifiers include: 840, 847, 849. Suggested new topic
labels in order: 1. Mergers & Acquisitions 2. Stock
Performance 3. Market Analysis”

• Top Word Frequencies: unity (16), ironsource (14), u
(14), merger (8), software (6), business (6), agreement
(5), shares (5), finance (4), investing (4)

• Top N-grams: unity software (6), ironsource http (5),
merger agreement (5), agreement ironsource (4), agree-
ment ironsource http (4), merger agreement ironsource
(4), merger agreement ironsource http (4), announces
merger (2), announces merger agreement (2), announces
merger agreement ironsource (2)

TABLE VII
FREQUENCY OF LLM SUGGESTED LABELS FOR TWITTER FINANCIAL

NEWS CLUSTER 3 (10 RUNS)

Suggested Label Priority Points
Mergers & Acquisitions 28
Stock Performance 20
Investment Analysis 4
Five other topics 1-3

Frequent terms such as ’unity’, ’ironsource’, and ’merger
agreement’ clearly point to merger and acquisition activity.
The LLM’s suggested change of topic from preassigned label
“trading” to new labels “Mergers & Acquisitions” and “Stock
Performance” is supported by recurring N-grams such as
“unity software” and “merger agreement ironsource.” The
dominance of these new label suggestions across multiple runs
(Table VIII) underscores the cluster’s precision along these
new broader topic areas.

These examples demonstrate the consistent ability of the
LLM to process impure text clusters and suggest new topic
labels better anchored in the recurrent high-frequency terms
and N-grams of the documents. It is also shown that the
suggested new topics are stable across multiple LLM runs
and provide labels that better capture the thematic coherence
within these clusters. By also pinpointing precise misclassifi-
cations and suggesting more granular event-specific categories,
the LLM demonstrates that the label entropy-based clustering
methodology not only grouping semantically related content,

but also refining it into more accurate and contextually relevant
labels. This establishes a robust foundation for improved
content categorization and analysis.

V. DISCUSSION

Our approach demonstrates promising capabilities for dis-
covering new topics and addressing mislabeled items in short-
text collections. We also demonstrate potential integration
points for language models in text-classification pipelines,
which is an area of considerable interest given the expansion
in LLM capabilities and application areas. Our impure cluster
identification technique suggests directions for targeting LLM
tasks to relevant sets of items to improve its performance
on tasks. Our work builds primarily on a novel adaptation
of density-based clustering methods and LLMs capability to
identify shared and coherent themes running across a set of
short texts.

Limitations and Future Work There are several limitations
to our approach that could be addressed in future work. First,
our approach focuses on short-texts, such as tweets, and does
not consider longer text documents, such as articles. We expect
our general approach - embedding, followed by identifying
impure clusters and utilizing an LLM for relabeling - to extend
to collections of longer text documents. However, with token
limits on LLM inputs, the specific pipeline would need to
be adapted to accommodate longer text items. In addition,
longer texts may present computational challenges that would
need to be addressed. Second, we do not consider how our
approach would scale to more items. We target a common
use case involving collections with thousands of items, which
could be gathered by selection for refinement and testing of
existing classification models. However, there may be cases
where pipelines need to scale to larger item collections. The
scalability of this technique would require additional testing.
Third, we focus on datasets with a single label for each text
and do not consider multi-class datasets. Multi-class labeling
presents additional complexity to the identification of impure
clusters. We intend to address this challenge in future work.
Finally, our approach sets the stage for iterative refinement
of label taxonomies to improve classification performance
and integrate evolving themes. However, we do not fully
develop such a pipeline here. Such an approach would require
additional steps in our pipeline, and may need to involve user
input to steer label refinement and model retraining.

VI. CONCLUSION

We introduce a novel entropy-based clustering algorithm
that operates in the embedding space of text, where clusters are
defined by continuous regions of semantic similarity. Instead
of relying solely on density, our method highlights areas
with diverse labels, exposing “impure regions” that signal
uncertainty or emerging topics. Within clusters, semantic
coherence is preserved, while entropy identifies boundaries
where mislabeling or overlap occurs. LLMs are then applied to
interpret these regions, generating meaningful summaries, re-
labeling suggestions, and new category proposals. Experiments



on clean and noisy datasets confirmed that this combination
of entropy-driven clustering and LLM reasoning reliably un-
covers ambiguities, refines taxonomies, and strengthens the
adaptability of text classification systems.
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